Home Technology News Sci-Tech உங்கள் குவாண்டம் சிமுலேட்டரை நம்ப முடியுமா? MIT இயற்பியலாளர்கள் ஒரு புதிய குவாண்டம் நிகழ்வைப் புகாரளிக்கின்றனர்

உங்கள் குவாண்டம் சிமுலேட்டரை நம்ப முடியுமா? MIT இயற்பியலாளர்கள் ஒரு புதிய குவாண்டம் நிகழ்வைப் புகாரளிக்கின்றனர்

0
உங்கள் குவாண்டம் சிமுலேட்டரை நம்ப முடியுமா?  MIT இயற்பியலாளர்கள் ஒரு புதிய குவாண்டம் நிகழ்வைப் புகாரளிக்கின்றனர்

[ad_1]

குவாண்டம் அணு துகள் இயற்பியல் கருத்து

எம்ஐடியில் உள்ள இயற்பியலாளர்கள் குவாண்டம் சோதனைகளின் துல்லியத்தை சரிபார்க்க ஒரு நெறிமுறையை வகுத்துள்ளனர்.

அணு-அளவிலான அமைப்புகளின் வினோதமான நடத்தையை ஆராயும் சோதனைகளின் செல்லுபடியை உறுதிப்படுத்தும் முறையை சமீபத்திய வளர்ச்சி வழங்குகிறது.

அணு அளவில் இயற்பியல் விசித்திரமானது. விஞ்ஞானிகள் குவாண்டம் அனலாக் சிமுலேட்டர்களைப் பயன்படுத்துகின்றனர் – பல அணுக்களை குறைந்த வெப்பநிலையில் குளிர்விப்பது மற்றும் துல்லியமாக அளவீடு செய்யப்பட்ட லேசர்கள் மற்றும் காந்தங்களைப் பயன்படுத்தி அவற்றை ஆய்வு செய்வது ஆகியவை அடங்கும் – இந்த அசாதாரண குவாண்டம் விளைவுகளை கண்டறிய, பயன்படுத்த மற்றும் கட்டுப்படுத்த.

குவாண்டம் சிமுலேட்டர்களில் இருந்து பெறப்படும் எந்தவொரு புதிய புரிதலும் புதிய கவர்ச்சியான பொருட்கள், சிறந்த மற்றும் திறமையான மின்னணுவியல் மற்றும் நடைமுறை குவாண்டம் கணினிகளை வடிவமைப்பதற்கான வரைபடங்களை வழங்கும் என்று விஞ்ஞானிகள் நம்புகின்றனர். ஆனால் குவாண்டம் சிமுலேட்டர்களில் இருந்து நுண்ணறிவுகளை அறுவடை செய்ய, விஞ்ஞானிகள் முதலில் அவற்றை நம்ப வேண்டும்.

அதாவது, அவர்களின் குவாண்டம் சாதனம் “உயர் நம்பகத்தன்மை” மற்றும் குவாண்டம் நடத்தையை துல்லியமாக பிரதிபலிக்கிறது என்பதை அவர்கள் உறுதியாக நம்ப வேண்டும். உதாரணமாக, அணுக்களின் அமைப்பு வெளிப்புற இரைச்சலால் எளிதில் பாதிக்கப்படுகிறது என்றால், ஆராய்ச்சியாளர்கள் குவாண்டம் விளைவைக் கருதலாம். ஆனால் குவாண்டம் அனலாக் சிமுலேட்டர்களின் நம்பகத்தன்மையை வகைப்படுத்த எந்த நம்பகமான வழியும் இதுவரை இல்லை.

சமீபத்தில் வெளியிடப்பட்ட ஒரு ஆய்வில் இயற்கைஇயற்பியலாளர்கள் எம்ஐடி மற்றும் கால்டெக் ஒரு புதிய குவாண்டம் நிகழ்வைப் புகாரளிக்கவும்: அணுக்களின் குவாண்டம் ஏற்ற இறக்கங்களில் ஒரு குறிப்பிட்ட சீரற்ற தன்மை இருப்பதையும், இந்த சீரற்ற நடத்தை உலகளாவிய, கணிக்கக்கூடிய வடிவத்தை வெளிப்படுத்துகிறது என்பதையும் அவர்கள் கண்டறிந்தனர். சீரற்ற மற்றும் கணிக்கக்கூடிய நடத்தை ஒரு முரண்பாடாக இருக்கலாம். ஆனால் சில சீரற்ற ஏற்ற இறக்கங்கள் உண்மையில் கணிக்கக்கூடிய, புள்ளியியல் முறையைப் பின்பற்றலாம் என்பதை குழு உறுதிப்படுத்தியது.

மேலும் என்னவென்றால், குவாண்டம் அனலாக் சிமுலேட்டரின் நம்பகத்தன்மையை வகைப்படுத்த ஆராய்ச்சியாளர்கள் இந்த குவாண்டம் சீரற்ற தன்மையை ஒரு கருவியாகப் பயன்படுத்தியுள்ளனர். அவர்கள் தீர்மானிக்க முடியும் என்று கோட்பாடு மற்றும் சோதனைகள் மூலம் காட்டினார்[{” attribute=””>accuracy of a quantum simulator by analyzing its random fluctuations.

The team developed a new benchmarking protocol that can be applied to existing quantum analog simulators to gauge their fidelity based on their pattern of quantum fluctuations. The protocol could help to speed the development of new exotic materials and quantum computing systems.

“This work would allow characterizing many existing quantum devices with very high precision,” says study co-author Soonwon Choi, assistant professor of physics at MIT. “It also suggests there are deeper theoretical structures behind the randomness in chaotic quantum systems than we have previously thought about.”

The study’s authors include MIT graduate student Daniel Mark and collaborators at Caltech, the University of Illinois at Urbana-Champaign, Harvard University, and the University of California at Berkeley.

Random evolution

The new study was motivated by an advance in 2019 by Google, where researchers had built a digital quantum computer, dubbed “Sycamore,” that could carry out a specific computation more quickly than a classical computer.

Whereas the computing units in a classical computer are “bits” that exist as either a 0 or a 1, the units in a quantum computer, known as “qubits,” can exist in a superposition of multiple states. When multiple qubits interact, they can in theory run special algorithms that solve difficult problems in far shorter time than any classical computers.

The Google researchers engineered a system of superconducting loops to behave as 53 qubits, and showed that the “computer” could carry out a specific calculation that would normally be too thorny for even the fastest supercomputer in the world to solve.

Google also happened to show that it could quantify the system’s fidelity. By randomly changing the state of individual qubits and comparing the resulting states of all 53 qubits with what the principles of quantum mechanics predict, they were able to measure the system’s accuracy.

Choi and his colleagues wondered whether they could use a similar, randomized approach to gauge the fidelity of quantum analog simulators. But there was one hurdle they would have to clear: Unlike Google’s digital quantum system, individual atoms and other qubits in analog simulators are incredibly difficult to manipulate and therefore randomly control.

But through some theoretical modeling, Choi realized that the collective effect of individually manipulating qubits in Google’s system could be reproduced in an analog quantum simulator by simply letting the qubits naturally evolve.

“We figured out that we don’t have to engineer this random behavior,” Choi says. “With no fine-tuning, we can just let the natural dynamics of quantum simulators evolve, and the outcome would lead to a similar pattern of randomness due to chaos.”

Building trust

As an extremely simplified example, imagine a system of five qubits. Each qubit can exist simultaneously as a 0 or a 1, until a measurement is made, whereupon the qubits settle into one or the other state. With any one measurement, the qubits can take on one of 32 different combinations: 0-0-0-0-0, 0-0-0-0-1, and so on.

“These 32 configurations will occur with a certain probability distribution, which people believe should be similar to predictions of statistical physics,” Choi explains. “We show they agree on average, but there are deviations and fluctuations that exhibit a universal randomness that we did not know. And that randomness looks the same as if you ran those random operations that Google did.”

The researchers hypothesized that if they could develop a numerical simulation that precisely represents the dynamics and universal random fluctuations of a quantum simulator, they could compare the predicted outcomes with the simulator’s actual outcomes. The closer the two are, the more accurate the quantum simulator must be.

To test this idea, Choi teamed up with experimentalists at Caltech, who engineered a quantum analog simulator comprising 25 atoms. The physicists shone a laser on the experiment to collectively excite the atoms, then let the qubits naturally interact and evolve over time. They measured the state of each qubit over multiple runs, gathering 10,000 measurements in all.

Choi and colleagues also developed a numerical model to represent the experiment’s quantum dynamics, and incorporated an equation that they derived to predict the universal, random fluctuations that should arise. The researchers then compared their experimental measurements with the model’s predicted outcomes and observed a very close match — strong evidence that this particular simulator can be trusted as reflecting pure, quantum mechanical behavior.

More broadly, the results demonstrate a new way to characterize almost any existing quantum analog simulator.

“The ability to characterize quantum devices forms a very basic technical tool to build increasingly larger, more precise, and complex quantum systems,” Choi says. “With our tool, people can know whether they are working with a trustable system.”

Reference: “Preparing random states and benchmarking with many-body quantum chaos” by Joonhee Choi, Adam L. Shaw, Ivaylo S. Madjarov, Xin Xie, Ran Finkelstein, Jacob P. Covey, Jordan S. Cotler, Daniel K. Mark, Hsin-Yuan Huang, Anant Kale, Hannes Pichler, Fernando G. S. L. Brandão, Soonwon Choi, and Manuel Endres, 18 January 2023, Nature.
DOI: 10.1038/s41586-022-05442-1

The study was funded, in part, by the U.S. National Science Foundation, the Defense Advanced Research Projects Agency, the Army Research Office, and the Department of Energy.



[ad_2]

LEAVE A REPLY

Please enter your comment!
Please enter your name here