Home Technology News Sci-Tech வெப்பமான ஆர்க்டிக் பெருங்கடல் வடக்கு யூரேசியாவில் அதிக பனிப்பொழிவுக்கு வழிவகுக்கிறது

வெப்பமான ஆர்க்டிக் பெருங்கடல் வடக்கு யூரேசியாவில் அதிக பனிப்பொழிவுக்கு வழிவகுக்கிறது

0
வெப்பமான ஆர்க்டிக் பெருங்கடல் வடக்கு யூரேசியாவில் அதிக பனிப்பொழிவுக்கு வழிவகுக்கிறது

[ad_1]

ஆர்க்டிக் வெப்பமயமாதல் பனிப்பொழிவை அதிகரிக்கிறது

பெருகிய முறையில் சூடான மற்றும் பனி இல்லாத ஆர்க்டிக் பெருங்கடல், சமீபத்திய தசாப்தங்களில், அதிக அட்சரேகைகளில் அதிக ஈரப்பதத்திற்கு வழிவகுத்தது. இந்த ஈரப்பதம் சூறாவளி வானிலை அமைப்புகளால் தெற்கே கொண்டு செல்லப்படுகிறது, அங்கு அது பனியாக வீழ்கிறது, இது உலகளாவிய நீரியல் சுழற்சி மற்றும் அதைச் சார்ந்திருக்கும் பல நிலப்பரப்பு அமைப்புகளை பாதிக்கிறது. கடன்: Tomonori Sato

வெப்பமயமாதல் காலநிலை காரணமாக ஆர்க்டிக் பெருங்கடலில் இருந்து ஆவியாகும் நீர் தெற்கே கொண்டு செல்லப்படுகிறது மற்றும் இலையுதிர்காலத்தின் பிற்பகுதியிலும் குளிர்காலத்தின் தொடக்கத்திலும் வடக்கு யூரேசியாவில் பனிப்பொழிவு அதிகரிக்க வழிவகுக்கும் என்று ஒரு புதிய மாதிரி விளக்குகிறது. இந்த கண்டுபிடிப்புகள் கடுமையான வானிலை நிகழ்வுகளின் துல்லியமான கணிப்புகளை அனுமதிக்கும்.

புவி வெப்பமடைதல் காரணமாக, காற்றின் வெப்பநிலை அதிகரித்து வருகிறது, இது பனிப்பாறைகள் மற்றும் துருவ பனிக்கட்டிகள் உருகுவதற்கு வழிவகுக்கிறது. இருப்பினும், வெளித்தோற்றத்தில் முரண்பாடாக, கடந்த பத்தாண்டுகளில் வடக்கு யூரேசியாவின் சில பகுதிகளில் பனி மூட்டம் அதிகரித்துள்ளது. இருப்பினும், பனி என்பது தண்ணீரின் ஒரு வடிவம். புவி வெப்பமடைதல் வளிமண்டலத்தில் ஈரப்பதத்தின் அளவை அதிகரிப்பதால், மழை மற்றும் பனியின் அளவு மற்றும் சாத்தியக்கூறுகளையும் அதிகரிக்கிறது. ஈரப்பதம் எங்கிருந்து வருகிறது, அது எவ்வாறு உற்பத்தி செய்யப்படுகிறது மற்றும் தெற்கே எவ்வாறு கொண்டு செல்லப்படுகிறது என்பதைப் புரிந்துகொள்வது தீவிர வானிலை மற்றும் காலநிலையின் பரிணாம வளர்ச்சியின் சிறந்த கணிப்புகளுக்கு பொருத்தமானது.

சுற்றுச்சூழல் விஞ்ஞானி டோமோனோரி சாடோ[{” attribute=””>Hokkaido University in Japan and his team developed a new tagged moisture transport model that relies on the “Japanese 55-year reanalysis dataset,” a painstaking reanalysis of worldwide historical weather data over the span of the past 55 years. The group used this material to keep their model calibrated over much longer distances than hitherto possible and were thus able to shed light on the mechanism of moisture transport, particularly over the vast landmasses of Siberia.

A standard technique to analyze moisture transport is the “tagged moisture transport model.” This is a computer modeling technique that tracks where hypothetical chunks of atmospheric moisture form, how they are moved around, and where they precipitate due to the local climatic conditions. But the computer models become more and more inaccurate as the distance to the ocean increases. In particular, this makes quantitative predictions difficult. Thus, these methods have not been able to satisfyingly explain the snowfall in northern Eurasia.

Published today (November 24) in the journal npj Climate and Atmospheric Science, the results of the study show that water evaporation from the Arctic Ocean has increased over the past four decades. Furthermore, the biggest changes have occurred from the Barents and Kara Seas north of western Siberia, as well as over the Chukchi and East Siberian Seas north of eastern Siberia, between October and December. At this time of year, the Arctic Ocean is still warm and the area not covered by ice is still large.

Importantly, this development coincides with the area where sea ice retreat has been strongest over the time frame of the study. In addition, the quantitative model shows that evaporation and snowfall are especially strong during certain weather events such as cyclonic systems taking up unusually large quantities of moisture and transporting them south into Siberia, thus also highlighting detailed and specific mechanistic insights into the weather dynamics of the region.

With the Arctic Ocean being twice as sensitive to rapid warming than the global average, evaporation and subsequent changes to the hydrological cycle over northern Eurasia will become even more pronounced in the years to come. According to the researchers, since snowfall often delays the downstream effects of the abnormal weather events that cause it, “knowledge of the precursor signal stored as a snow cover anomaly is expected to help improve seasonal predictions of abnormal weather, e.g., the potential for heatwaves that enhance the risk of fire in boreal forests.”

This study, therefore, yields a key element to understanding the mechanism of this weather system as well as others that are influenced by it, and thus to making better predictions of severe events that could do harm to people and infrastructure.

Reference: “Enhanced Arctic moisture transport toward Siberia in autumn revealed by tagged moisture transport model experiment” 24 November 2022, npj Climate and Atmospheric Science.
DOI: 10.1038/s41612-022-00310-1

Funding: Japan Society for the Promotion of Science, Ministry of Education, Culture, Sports, Science and Technology of Japan, Japan Science and Technology Agency



[ad_2]

LEAVE A REPLY

Please enter your comment!
Please enter your name here